Paving the Pathway to Caries Control with Cellular and Salivary Diagnostics
Dentistry can now make the statement that it is a proactive and preventive profession
To paraphrase a statement made by the author’s friend and colleague, Dr. David Wong, associate dean at UCLA, one of the most laudable goals for any human being is to prevent disease for a large number of people. As dental teams move toward the medical model of preventive healthcare management by assessing, diagnosing, counseling, and healing, this philosophy should be guiding our course of action.
Oral healthcare is progressing beyond the past philosophy of observing a situation or condition until it requires surgical or restorative intervention. Practitioners now have the ability to have a proactive approach of collecting information whether it is data, cells, or even genetic information before a condition or health concern is apparent or has even occurred. The fact is that dental caries is the most common infectious disease known to humans and periodontal diseases are still highly prevalent, affecting up to 90% of the adult population.1 These are embarrassing statistics to the dental profession. However, with the use of salivary testing, cellular collection and evaluation, and stem-cell banking, dentistry can now truly make the statement that it is a proactive and preventive profession.
The dental pulp of both primary and permanent dentition contains an abundant supply of an individual’s undifferentiated stem cells. If these stem cells are properly collected, prepared, and stored (often referred to as stem-cell banking) in the future they may be able to provide the genetic code for tissue regeneration and other information as medical science progresses. Dental professionals are ideally positioned to be the pathway to the collection of these potentially invaluable cells.
Human saliva contains human DNA as well as bacterial and viral DNA, and the same genetic information found throughout the body is also found in saliva, making it ideal in testing for various systemic conditions. Whole saliva is composed of fluids from major and minor salivary glands, gingival crevicular fluid, epithelial and immune cells, and food debris. Salivary evaluation and diagnostics has become a reality; patients rinse with specialized solutions and expectorate into a funneled collection tube that is processed and analyzed at a medical laboratory. Because of the simplicity and noninvasive nature of salivary collection and testing, these screening modalities strongly appeal to clinicians.
A survey of almost 2,000 practicing dentists reported that 87% were receptive to noninvasively collecting saliva and submitting the sample for a diagnostic evaluation and were willing to integrate this procedure into their clinical practice.2
Saliva, especially whole saliva, can be easily collected from the patient in a completely noninvasive manner and evaluated at the laboratory to help accurately determine the patient’s present health status and their genetic susceptibility to and inherent risk of periodontal disease, as well as many other systemic conditions, including diabetes and various forms of cancer. By combining and interpreting the information obtained through clinical assessments, radiographic findings, and salivary, cellular, and DNA analysis, clinicians can obtain a more accurate evaluation of the patient’s health status today, and possibly in future, which in turn assists in more individualized counseling, management, and effective treatment.
Saliva is shown to harbor bacteria, viruses, and proteins that can be tested. Simple salivary tests can also identify the type and concentration of pathogenic bacteria that are known to cause periodontal disease. This noninvasive collection method also can be used as a screening tool to help detect various viruses and especially identify patients who might be at an increased risk for oropharyngeal cancer, as well as to help develop the appropriate referral and surveillance recommendations.
By properly incorporating noninvasive screening procedures such as salivary diagnostics and cellular collection into the practice’s armamentarium, many of these concerns can be addressed. These methods not only give the dental clinician the ability to provide a higher standard of care, it also increases the patient’s understanding of the tremendous overall value of comprehensive dental care. More specifically, the clinical procedures and science of these procedures can have a positive impact on patient overall health outcomes with minimal to no health risks and financial concerns for everyone.
It has been reported that more than 70% of Americans regularly visit an oral healthcare provider, approximately 30% more than medical providers.2 This allows for significant opportunities for dental clinicians to engage in the early detection of life-threatening conditions. However, it is imperative that dental teams understand the consequences of these discoveries and learn the proper communication skills and develop the appropriate referral pathways for the management of our findings.
Today, the use of salivary analysis is predominately for periodontal disease and peri-implantitis. Integrating salivary testing, cellular collection, and stem-cell banking into the dental practice can be beneficial to our patients today as well as in the future as science and medicine advances. These measures will become even more valuable as their benefits will become much broader. As salivary diagnostics is fully integrated into dentistry, it presents an opportunity to advance dentistry into primary healthcare. Healthcare providers can use these valuable procedures to enlighten patients to the connection between oral and systemic health by collecting, testing, and evaluating the fluids and cells in our area of expertise, the oral cavity.
References
1. Pihlstrom BL, Michalowicz BS, Johnson NW. Periodontal diseases. Lancet. 2005;366(9499):1809-1820.
2. Greenberg BL, Glick M, Frantsve-Hawley J, Kantor ML. Dentists’ attitudes toward chairside screening for medical conditions. J Am Dent Assoc. 2010;141(1):52-62.
About the Author
Scott D. Benjamin, DDS
Research Associate
New York University College of Dentistry
New York, New York
Private Practice
Sidney, New York